skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Hongyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2026
  2. We study the dissipation enhancement by cellular flows. Previous work by Iyer, Xu, and Zlato\v{s} produces a family of cellular flows that can enhance dissipation by an arbitrarily large amount. We improve this result by providing quantitative bounds on the dissipation enhancement in terms of the flow amplitude, cell size and diffusivity. Explicitly we show that the \emph{mixing time} is bounded by the exit time from one cell when the flow amplitude is large enough, and by the reciprocal of the effective diffusivity when the flow amplitude is small. This agrees with the optimal heuristics. We also prove a general result relating the \emph{dissipation time} of incompressible flows to the \emph{mixing time}. The main idea behind the proof is to study the dynamics probabilistically and construct a successful coupling. 
    more » « less